

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA ESCOLA PREPARATÓRIA DE CADETES DO AR

CONCURSO DE ADMISSÃO AO 1º ANO DO CPCAR 2005

PROVA DE MATEMÁTICA 17 de AGOSTO de 2004

Transcreva este dado para o seu cartão de respostas

VERSÃO: A

ATENÇÃO! ESTA PROVA CONTÉM 30 QUESTÕES.

- 01 Analise as afirmativas abaixo:
 - I Sejam A, B e C três conjuntos não vazios. Se A \subset B e C $A \neq \emptyset$, então, $(A \ C) \subset B$.
 - II Se A e B são dois conjuntos não vazios tais que A B = $\{x \in 1 \ x \ 8\}, A - B = \{1,3,6,7\} e$ $-A = \{4,8\}$, então $A = B = \emptyset$.
 - III Dados os números reais x tais que: $x \quad \{x \in \quad -1 < x \leq 2\}, \ \{x \in \quad x < 0\} \ e \ \{x \in \quad x \geq$ 3); então, a união de todos os números reais x é o conjunto $\{x \in x \le -1 \text{ ou } x \ge 3\}.$

É correto afirmar que

- a) apenas II é verdadeira.
- c) todas são falsas.
- b) apenas I é falsa.
- d) II e III são falsas.
- 02 Se x for inteiro positivo, então $x^3 x = x(x^2 1) = x(x 1)(x + 1)$ será o produto de três números inteiros consecutivos. Daí se conclui que x³ - x será sempre

 - a) número primo. c) divisível por 4. b) múltiplo de 5 d) múltiplo de 6.
 - b) múltiplo de 5.
- d) múltiplo de 6.
- 03 Se o mínimo múltiplo comum entre os inteiros $a = 16 \times 3^{k}$ $(k \neq 0)$ e **b = 2^p x 21** for 672, então, pode-se concluir que

Obs.: Considere x o sinal de multiplicação.

- a) p é divisor de 2^p x 21 c) pk é múltiplo de 3 b) 3^k é divisível por 2^p d) p-k=4k

- 04 O número y = 2^a x 3^b x c^2 é divisor de N = 15x20x6. Sabendo-se que y admite exatamente 36 divisores, é correto afirmar que

Obs.: Considere x o sinal de multiplicação.

- a) ab = c
- a < b < c
- b) a+b=c
- 05 Um retângulo, cujo perímetro é igual a 4,80 m e tendo um dos lados medindo 15 dm, deve ser totalmente dividido em pedaços quadrados com a maior área possível. A quantidade de quadrados assim obtida é um número cuja soma dos algarismos é
 - a) 3

c) 9

b) 6

d) 12

- 06 Dois atletas iniciam juntos uma marcha. O comprimento do passo do primeiro é $\frac{2}{3}$ do comprimento do passo do segundo. Enquanto o primeiro dá 5 passos, o segundo dá 4 passos. Tendo o primeiro atleta percorrido 60 km, pode-se dizer que o segundo terá percorrido
 - a) 32 km
- c) 72 km
- b) 50 km
- d) 90 km
- 07 Analise as afirmativas seguintes e classifique-as em (V) verdadeiras ou (F) falsas.
 - () Soma-se um número n ao numerador e ao denominador da fração $\frac{2}{3}$ e ela tem um aumento de 20%. Então n é igual a 3
 - () A diferença $8^{0,666...} 9^{0,5}$ é igual a 1
 - () O menor número natural n, diferente de zero, que torna o produto de 3888 por *n* um cubo perfeito é 12

A seqüência correta para essa classificação é

a) F, V, F.

- b) F, V, V.
- c) V, F, V.d) V, V, V.
- 08 Normas de segurança determinam que um certo tipo de avião deve levar, além do combustível suficiente para chegar ao seu destino, uma reserva para voar por mais 45 minutos. A velocidade média desse tipo de avião é de 200 km/h e seu consumo é de 35 litros de combustível por hora de vôo. Com base nisso, pode-se dizer que a quantidade mínima de combustível, incluindo a reserva, necessária para uma viagem de 250 km é, em litros, igual a
 - a) 43,75

c) 68,25

b) 26,25

- d) 70
- 09 Numa loja de confecções, uma pessoa comprou calças, camisas, meias e jaquetas. Pelo preço normal da loja, o valor pago pelas mercadorias citadas acima corresponderia respectivamente a 20%, 15%, 15% e 50% do preço normal da loja. Em virtude de uma promoção, essa pessoa ganhou um desconto de 10% no preço das calças e 20% no preço das jaquetas. Pode-se dizer que o desconto obtido no valor total da compra foi de
 - a) 10%

c) 30%

b) 12%

- d) 88%
- 10 A diferença entre dois capitais é de R\$ 200,00, estando o maior aplicado a juros simples de 20% ao ano e o menor a juros simples de 30% ao ano. Sabendo-se que os dois capitais produzem os mesmos juros após 1852 dias, pode-se concluir que o capital maior é

Obs.: Considere um ano comercial igual a 360 dias.

- a) R\$ 400,00
- c) R\$ 600,00
- b) R\$ 500,00
- d) R\$ 700,00

- 11 Dadas as següências de números
 - I) $a_1 = 3 \ a_2 = 12 \ a_3 = 27$
 - II) $b_1 = 1$ $b_2 = 2$ $b_3 = 3$

Pode-se afirmar que

- a) os ai são inversamente proporcionais aos bi.
- b) os ai são diretamente proporcionais aos quadrados dos
- c) os ai são inversamente proporcionais aos quadrados dos
- d) os ai são diretamente proporcionais às raízes quadradas dos b_i.
- 12 Se x homens, trabalhando x horas por dia durante x dias, produzem x artigos, então, o número de dias necessário para que y homens, trabalhando y horas por dia produzam um número y de artigos é

- 13 Se a e b são dois números inteiros não nulos tais que 4a + b = 2b - (3a - b), então, necessariamente, ocorre que
 - a) a é par e b é múltiplo de 7
 - b) a é par e b é ímpar.
 - c) a e b são números primos.
 - d) a é divisor de 2 e b é divisor de 7
- 14 Gastei tudo que tinha em 6 lojas. Em cada uma delas gastei um real a mais do que a metade do que tinha ao entrar nela. Com base nisso, pode-se afirmar que
 - a) inicialmente tinha 120 reais.
 - b) ao entrar na 3^a loja tinha 16 reais.
 - c) gastei 8 reais na 4ª loja.
 - d) sobraram 4 reais ao sair da 4ª loia.
- 15 Com base na igualdade $\frac{5x-3}{2} \frac{4}{5} + \frac{2x}{3} = \frac{19x-8}{6} \frac{1}{2}$, pode-se afirmar que
 - a) tem apenas uma solução e esta solução é um número
 - b) tem apenas uma solução e esta solução é um número
 - c) tem uma infinidade de soluções.
 - d) não tem nenhuma solução.
- 16 O valor da expressão $\left| \left(\frac{1}{2} \right)^3 (169)^{0.5} x (128)^{-\frac{1}{7}} \right| x 0,002 \text{ }$

Obs.: Considere x o sinal de multiplicação.

- a) $-12,750 \times 10^{-3}$
- c) $12,750 \times 10^{-6}$
- b) $-12,750 \times 10^{-6}$
- d) $12,750 \times 10^{-3}$

- 17 Para que o número x satisfaça simultaneamente designaldades 3x + 2 < 7 - 2x, $48x \le 3x + 10$ 11-2(x-3) > 1-3(x-5) é suficiente que
 - a) $-1 < x \le \frac{2}{9}$

- b) $\frac{2}{9} \le x < 1$ d) $-1 < x < \frac{2}{9}$
- 18 Sendo $\frac{p}{}$ uma fração irredutível, o número que se deve subtrair de seus termos para se obter o oposto do inverso multiplicativo dessa fração é
 - a) p+q

b) -(p+q)

- 19 As raízes de $ax^2 + bx + c = 0$ são **r** ou **s**. A equação cujas raízes são ar +b ou as +b é

- a) $x^2 bx ac = 0$ b) $x^2 bx + ac = 0$ c) $x^2 + 3bx + ca + 2b^2 = 0$ d) $x^2 + 3bx ca + 2b^2 = 0$
- 20 Resolvendo-se a equação $\frac{\sqrt{x+4} + \sqrt{x-4}}{\sqrt{x+4} \sqrt{x-4}} = 2$, encontra-se
 - um número
 - a) par

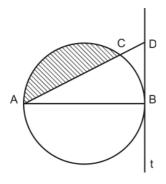
c) divisor de 81

b) primo

- d) múltiplo de 7
- 21 "A natureza tem dado sinais de que o ser humano não tem sido benevolente com os recursos naturais - aumento da temperatura global, derretimento das geleiras e, recentemente, um novo alarme: a água potável está escasseando." - AMAE educando - agosto de 2003.

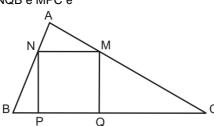
O gráfico abaixo representa o consumo de água (em litros) registrado no hidrômetro de uma residência, do dia 1º do mês de junho até o dia 30 do mesmo mês.

Com base no gráfico acima, é correto afirmar que

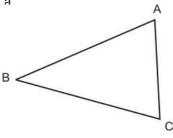

- a) no dia 20, o consumo de água correspondeu a mais de 27% do consumo do dia 30
- b) o consumo de água sempre cresceu do dia 1º ao dia 15
- c) no dia 20, o consumo foi o triplo do consumo do dia 10
- d) do dia 1º ao dia 10, o consumo aumentou o correspondente a $\frac{1}{3}$ do que aumentou do dia 20 para o dia 30

- 22 Uma empresa produz quantidades x e y de dois modelos de camisas por hora, utilizando o mesmo processo de produção. A relação entre ${\boldsymbol x}$ e ${\boldsymbol y}$ é dada por (y - 2)(x - 3) = 48. As quantidades **x** e **y** que devem ser produzidas por hora de modo a se ter y = 2x são tais que
 - a) x > 10 e y < 20
- c) x < 20 e y < 10
- b) x > 20 e y < 10
- d) x < 10 e y < 20
- 23 Quatro semi-retas OA, OB, OC e OD formam os ângulos adjacentes AÔB, BÔC, CÔD e DÔA, respectivamente proporcionais aos números 1, 2, 4 e 5. As bissetrizes de AÔB e CÔD formam um ângulo convexo de
 - a) 90°

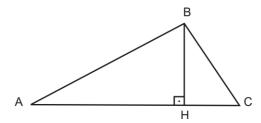
c) 135°


b) 120°

- d) 150°
- 24 Em um círculo cujo comprimento da circunferência é igual a 6π são traçadas duas cordas AB e CD que medem $2\sqrt{3}$ e $4\sqrt{2}$, respectivamente, e cujas retas suporte não se interceptam. Calculando a área do quadrilátero ABCD inscrito no círculo tem-se o número
 - a) $5(\sqrt{2} + \sqrt{3})$
- c) $5\sqrt{2} + \sqrt{3}$
- b) $5\sqrt{3} + \sqrt{2}$
- 25 Na figura abaixo, AB é um diâmetro do círculo, t é tangente ao círculo em B, $\overline{AD} = 25$, $\overline{CD} = 9$ e sen $40^{\circ} = 0.6$. O valor da área hachurada (considerando π = 3,14) é uma dízima periódica de período igual a


- a) 2
- b) 3

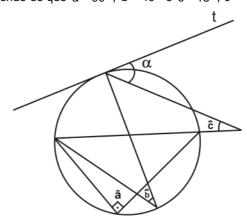
- c) 4 d) 5
- 26 Na figura abaixo, MNPQ é um quadrado de lado m, a base BC do triângulo ABC mede a. A soma das áreas dos triângulos NQB e MPC é


- a) m(a+m)
- c) m(2a-m)
- b) 2m(a-m)
- d) $\frac{m}{2}(a+m)$

27 - Considere o triângulo ABC da figura abaixo, com AB = 12, $\overline{AC} = 8$ e $\overline{BC} = 14$. As bissetrizes interna e externa do ângulo correspondente ao vértice A encontram a reta suporte do lado oposto em D e E, respectivamente. O valor de BE é igual a

- a) 25
- b) 32

- c) 42
- d) 48
- 28 Considere o triângulo ABC abaixo, retângulo em B.

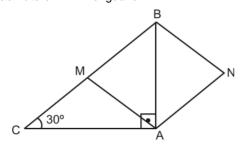


Sabendo-se que AB = 4 cm e a razão entre as áreas dos triângulos ABH e BCH, nessa ordem, é igual a 2, conclui-se que a medida AC, em cm, é igual a

a) 2√6

b) $2\sqrt{3}$

- d) 3
- 29 O valor do suplementar do ângulo α na figura abaixo, sabendo-se que $\hat{a} = 90^{\circ}$, $\hat{b} = 40^{\circ}$ e $\hat{c} = 15^{\circ}$, é


a) 160°

c) 155°

b) 168°

d) 135°

30 - No triângulo retângulo ABC da figura, sabe-se que $\overline{BC}=2k$, AM é mediana do lado BC, MB//AN e BN//AM, então, a área do quadrilátero AMBN é igual a

a) $k^2\sqrt{3}$

c) $\frac{k^2}{2}$

b) $4k^2\sqrt{3}$

d) $\frac{k^2\sqrt{3}}{2}$